

Chapter Seven ALTERNATING CURRENT

We have so far considered direct current (dc) sources and circuits with dc sources. These currents do not change direction with time. But voltages and currents that vary with time are very common. The electric mains supply in our homes and offices is a voltage that varies like a sine function with time. Such a voltage is called *alternating voltage* (ac voltage) and the current driven by it in a circuit is called the *alternating current* (ac current)*. Today, most of the electrical devices we use require ac voltage. This is mainly because most of the electrical energy sold by power companies is transmitted and distributed as alternating current. The main reason for preferring use of ac voltage over dc voltage is that ac voltages can be easily and efficiently converted from one voltage to the other by means of transformers. Further, electrical energy can also be transmitted economically over long distances. AC circuits exhibit characteristics which are exploited in many devices of daily use. For example, whenever we tune our radio to a favourite station, we are taking advantage of a special property of ac circuits - one of many that you will study in this chapter.

^{*} The phrases *ac voltage* and *ac current* are contradictory and redundant, respectively, since they mean, literally, *alternating current voltage* and *alternating current current*. Still, the abbreviation *ac* to designate an electrical quantity displaying simple harmonic time dependance has become so universally accepted that we follow others in its use. Further, *voltage* – another phrase commonly used means potential difference between two points.

Physics

Nicola Tesla (1856 -1943) Serbian-American scientist, inventor and genius. He conceived the idea of the rotating magnetic field, which is the basis of practically all alternating current machinery, and which helped usher in the age of electric power. He also invented among other things the induction motor, the polyphase system of ac power, and the high frequency induction coil (the Tesla coil) used in radio and television sets and other electronic equipment. The SI unit of magnetic field is named in his honour.

FIGURE 7.2 In a pure resistor, the voltage and current are in phase. The minima, zero and maxima occur at the same respective times.

NICOLA TESLA (1856 – 1943)

7.2 AC VOLTAGE APPLIED TO A RESISTOR

Figure 7.1 shows a resistor connected to a source ε of ac voltage. The symbol for an ac source in a circuit diagram is \odot . We consider a source which produces sinusoidally varying potential difference across its terminals. Let this potential difference, also called ac voltage, be given by

 $v = v_m \sin \omega t$

(7.1)

where v_m is the amplitude of the oscillating potential difference and ω is its angular frequency.

FIGURE 7.1 AC voltage applied to a resistor.

To find the value of current through the resistor, we apply Kirchhoff's loop rule $\sum \varepsilon(t) = 0$ (refer to Section 3.13), to the circuit shown in Fig. 7.1 to get

 $v_m \sin \omega t = iR$

or
$$i = \frac{v_m}{R} \sin \omega t$$

Since *R* is a constant, we can write this equation as

$$i = i_m \sin \omega t \tag{7.2}$$

where the current amplitude i_m is given by

$$i_m = \frac{v_m}{R} \tag{7.3}$$

Equation (7.3) is Ohm's law, which for resistors, works equally well for both ac and dc voltages. The voltage across a pure resistor and the current through it, given by Eqs. (7.1) and (7.2) are plotted as a function of time in Fig. 7.2. Note, in particular that both v and i reach zero, minimum and maximum values at the same time. Clearly, *the voltage* and *current are in phase with each other*.

We see that, like the applied voltage, the current varies sinusoidally and has corresponding positive and negative values during each cycle. Thus, the sum of the instantaneous current values over one complete cycle is zero, and the average current is zero. The fact that the average current is zero, however, does

not mean that the average power consumed is zero and that there is no dissipation of electrical energy. As you know, Joule heating is given by i^2R and depends on i^2 (which is always positive whether *i* is positive or negative) and not on *i*. Thus, there is Joule heating and dissipation of electrical energy when an ac current passes through a resistor.

The instantaneous power dissipated in the resistor is

$$p = i^2 R = i_m^2 R \sin^2 \omega t \tag{7.4}$$

The average value of *p* over a cycle is*

$$p = \langle i^2 R \rangle = \langle i_m^2 R \sin^2 \omega t \rangle$$
 [7.5(a)]

where the bar over a letter (here, *p*) denotes its average value and <.....> denotes taking average of the quantity inside the bracket. Since, i_m^2 and *R* are constants,

$$\overline{p} = i_m^2 R < \sin^2 \omega t >$$

$$[7.5(b)]$$

Using the trigonometric identity, $\sin^2 \omega t = 1/2 (1 - \cos 2\omega t)$, we have $\langle \sin^2 \omega t \rangle = (1/2) (1 - \langle \cos 2\omega t \rangle)$ and since $\langle \cos 2\omega t \rangle = 0^{**}$, we have,

$$<\sin^2\omega t>=rac{1}{2}$$

Thus,

$$\overline{p} = \frac{1}{2}i_m^2 R$$

To express ac power in the same form as dc power $(P = I^2 R)$, a special value of current is defined and used. It is called, *root mean square* (rms) or *effective current* (Fig. 7.3) and is denoted by I_{rms} or I.

FIGURE 7.3 The rms current *I* is related to the peak current i_m by $I = i_m / \sqrt{2} = 0.707 i_m$.

**
$$\langle \cos 2\omega t \rangle = \frac{1}{T} \int_{0}^{T} \cos 2\omega t \, dt = \frac{1}{T} \left[\frac{\sin 2\omega t}{2\omega} \right]_{0}^{T} = \frac{1}{2\omega T} \left[\sin 2\omega T - 0 \right] = 0$$

Alternating Current

George Westinghouse (1846 - 1914) A leading proponent of the use of alternating current over direct current. Thus, he came into conflict with Thomas Alva Edison, an advocate of direct current. Westinghouse was convinced that the technology of alternating current was the key to the electrical future. He founded the famous Company named after him and enlisted the services of Nicola Tesla and other inventors in the development of alternating current motors and apparatus for the transmission of high tension current, pioneering in large scale lighting.

[7.5(c)]

It is defined by

Physics

$$I = \sqrt{i^2} = \sqrt{\frac{1}{2}i_m^2} = \frac{i_m}{\sqrt{2}} = 0.707 \ i_m$$
(7.6)

In terms of *I*, the average power, denoted by *P* is

$$P = \overline{p} = \frac{1}{2} i_m^2 R = I^2 R$$
(7.7)

Similarly, we define the rms voltage or effective voltage by

$$V = \frac{v_m}{\sqrt{2}} = 0.707 \ v_m \tag{7.8}$$

From Eq. (7.3), we have

$$v_m = i_m R$$

or, $\frac{v_m}{\sqrt{2}} = \frac{i_m}{\sqrt{2}} R$
or, $V = IR$ (7.9)

Equation (7.9) gives the relation between ac current and ac voltage and is similar to that in the dc case. This shows the advantage of introducing the concept of rms values. In terms of rms values, the equation for power [Eq. (7.7)] and relation between current and voltage in ac circuits are essentially the same as those for the dc case.

It is customary to measure and specify rms values for ac quantities. For example, the household line voltage of 220 V is an rms value with a peak voltage of

 $v_m = \sqrt{2} V = (1.414)(220 V) = 311 V$

In fact, the I or rms current is the equivalent dc current that would produce the same average power loss as the alternating current. Equation (7.7) can also be written as

 $P = V^2 / R = IV$ (since V = IR)

Example 7.1 A light bulb is rated at 100W for a 220 V supply. Find (a) the resistance of the bulb; (b) the peak voltage of the source; and (c) the rms current through the bulb.

Solution

1

EXAMPLE 7.1

(a) We are given P = 100 W and V = 220 V. The resistance of the bulb is

$$R = \frac{V^2}{P} = \frac{(220 \,\mathrm{V})^2}{100 \,\mathrm{W}} = 484 \,\Omega$$

(b) The peak voltage of the source is

 $v_{m} = \sqrt{2}V = 311V$

(c) Since, P = I V $I = \frac{P}{V} = \frac{100 \text{ W}}{220 \text{ V}} = 0.454 \text{ A}$

236

7.3 Representation of AC Current and Voltage by Rotating Vectors — Phasors

In the previous section, we learnt that the current through a resistor is in phase with the ac voltage. But this is not so in the case of an inductor, a capacitor or a combination of these circuit elements. In order to show

phase relationship between voltage and current in an ac circuit, we use the notion of *phasors*. The analysis of an ac circuit is facilitated by the use of a phasor diagram. A phasor* is a vector which rotates about the origin with angular speed ω , as shown in Fig. 7.4. The vertical components of phasors **V** and **I** represent the sinusoidally varying quantities v and i. The magnitudes of phasors **V** and **I** represent the amplitudes or the peak values v_m and i_m of these oscillating quantities. Figure 7.4(a) shows the voltage and current phasors and their relationship at time t_1 for the case of an ac source connected to a resistor i.e., corresponding to the circuit shown in Fig. 7.1. The projection of

voltage and current phasors on vertical axis, i.e., $v_m \sin \omega t$ and $i_m \sin \omega t$, respectively represent the value of voltage and current at that instant. As they rotate with frequency ω , curves in Fig. 7.4(b) are generated.

From Fig. 7.4(a) we see that phasors \mathbf{V} and \mathbf{I} for the case of a resistor are in the same direction. This is so for all times. This means that the phase angle between the voltage and the current is zero.

7.4 AC VOLTAGE APPLIED TO AN INDUCTOR

Figure 7.5 shows an ac source connected to an inductor. Usually, inductors have appreciable resistance in their windings, but we shall

assume that this inductor has negligible resistance. Thus, the circuit is a purely inductive ac circuit. Let the voltage across the source be $v = v_m \sin \omega t$. Using

the Kirchhoff's loop rule, $\sum \varepsilon(t) = 0$, and since there is no resistor in the circuit,

$$v - L\frac{\mathrm{d}i}{\mathrm{d}t} = 0 \tag{7.10}$$

where the second term is the self-induced Faraday emf in the inductor; and L is the self-inductance of

FIGURE 7.5 An ac source connected to an inductor.

^{*} Though voltage and current in ac circuit are represented by phasors – rotating vectors, they are not vectors themselves. They are scalar quantities. It so happens that the amplitudes and phases of harmonically varying scalars combine mathematically in the same way as do the projections of rotating vectors of corresponding magnitudes and directions. The *rotating vectors* that *represent* harmonically varying scalar quantities are introduced only to provide us with a simple way of adding these quantities using a rule that we already know.

Physics

the inductor. The negative sign follows from Lenz's law (Chapter 6). Combining Eqs. (7.1) and (7.10), we have

$$\frac{\mathrm{d}i}{\mathrm{d}t} = \frac{v}{L} = \frac{v_m}{L}\sin\omega t \tag{7.11}$$

Equation (7.11) implies that the equation for i(t), the current as a function of time, must be such that its slope di/dt is a sinusoidally varying quantity, with the same phase as the source voltage and an amplitude given by v_m/L . To obtain the current, we integrate di/dt with respect to time:

$$\int \frac{\mathrm{d}i}{\mathrm{d}t} \mathrm{d}t = \frac{v_m}{L} \int \sin(\omega t) \mathrm{d}t$$

and get,

 $i = -\frac{v_m}{\omega L}\cos(\omega t) + \text{constant}$

The integration constant has the dimension of current and is timeindependent. Since the source has an emf which oscillates symmetrically about zero, the current it sustains also oscillates symmetrically about zero, so that no constant or time-independent component of the current exists. Therefore, the integration constant is zero.

Using

$$-\cos(\omega t) = \sin\left(\omega t - \frac{\pi}{2}\right), \text{ we have}$$
$$i = i_m \sin\left(\omega t - \frac{\pi}{2}\right)$$
(7.12)

where $i_m = \frac{v_m}{\omega L}$ is the amplitude of the current. The quantity ωL is analogous to the resistance and is called *inductive reactance*, denoted by X_L :

$$X_L = \omega L \tag{7.13}$$

The amplitude of the current is, then

$$i_m = \frac{v_m}{X_L} \tag{7.14}$$

The dimension of inductive reactance is the same as that of resistance and its SI unit is ohm (Ω). The inductive reactance limits the current in a purely inductive circuit in the same way as the resistance limits the current in a purely resistive circuit. The inductive reactance is directly proportional to the inductance and to the frequency of the current.

A comparison of Eqs. (7.1) and (7.12) for the source voltage and the current in an inductor shows that the current lags the voltage by $\pi/2$ or one-quarter (1/4) cycle. Figure 7.6 (a) shows the voltage and the current phasors in the present case at instant t_1 . The current phasor **I** is $\pi/2$ behind the voltage phasor **V**. When rotated with frequency ω counter-clockwise, they generate the voltage and current given by Eqs. (7.1) and (7.12), respectively and as shown in Fig. 7.6(b).

Interactive animation on Phasor diagrams of ac circuits containing, R, L, C and RLC series circuits: http://www.animations.physics.unsw.edu.au//jw/AC.htm **PHYSICS**

FIGURE 7.6 (a) A Phasor diagram for the circuit in Fig. 7.5. (b) Graph of v and i versus ωt .

We see that the current reaches its maximum value later than the

voltage by one-fourth of a period $\left[\frac{T}{4} = \frac{\pi/2}{\omega}\right]$. You have seen that an inductor has reactance that limits current similar to resistance in a dc circuit. Does it also consume power like a resistance? Let us try to find out.

The instantaneous power supplied to the inductor is

$$p_{L} = iv = i_{m} \sin\left(\omega t - \frac{\pi}{2}\right) \times v_{m} \sin(\omega t)$$
$$= -i_{m} v_{m} \cos(\omega t) \sin(\omega t)$$
$$= -\frac{i_{m} v_{m}}{2} \sin(2\omega t)$$

So, the average power over a complete cycle is

$$P_{\rm L} = \left\langle -\frac{i_m v_m}{2} \sin(2\omega t) \right\rangle$$
$$= -\frac{i_m v_m}{2} \left\langle \sin(2\omega t) \right\rangle = 0,$$

since the average of $\sin(2\omega t)$ over a complete cycle is zero.

Thus, the average power supplied to an inductor over one complete cycle is zero.

Figure 7.7 explains it in detail.

Example 7.2 A pure inductor of 25.0 mH is connected to a source of 220 V. Find the inductive reactance and rms current in the circuit if the frequency of the source is 50 Hz.

Solution The inductive reactance.

$$X_L = 2\pi v L = 2 \times 3.14 \times 50 \times 25 \times 10^{-3} \Omega$$

= 7.85\Omega
we rms current in the circuit is

Th

$$I = \frac{V}{X_L} = \frac{220 \,\mathrm{V}}{7.85 \,\Omega} = 28 \mathrm{A}$$

EXAMPLE 7.2

No reput

0-1 Current *i* through the coil entering at A increase from zero to a maximum value. Flux lines are set up i.e., the core gets magnetised. With the polarity shown voltage and current are both positive. So their product *p* is positive. ENERGY IS ABSORBED FROM THE SOURCE.

1-2 Current in the coil is still positive but is decreasing. The core gets demagnetised and the net flux becomes zero at the end of a half cycle. The voltage v is negative (since di/dt is negative). The product of voltage and current is negative, and ENERGY IS BEING RETURNED TO SOURCE.

One complete cycle of voltage/current. Note that the current lags the voltage.

2-3 Current *i* becomes negative i.e., it enters at B and comes out of A. Since the direction of current has changed, the polarity of the magnet changes. The current and voltage are both negative. So their product p is positive. ENERGY IS ABSORBED.

3-4 Current *i* decreases and reaches its zero value at 4 when core is demagnetised and flux is zero. The voltage is positive but the current is negative. The power is, therefore, negative. ENERGY ABSORBED DURING THE CYCLE 2-3 IS RETURNED TO THE SOURCE.

FIGURE 7.7 Magnetisation and demagnetisation of an inductor.